
Chemical Engineering Journal 92 (2003) 15–26

Influence of secondary flow on diffusion with heterogeneous reaction
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Abstract

The concentration distribution in a Newtonian fluid for the secondary flow in a curved tube with bulk/wall reaction is obtained for a
range of parameter values using an axially marching spectral finite difference scheme. The results predominantly illustrate that for fixed
extent of secondary flows there is an improvement in the performance of the reactor as the effect of bulk and wall reaction mechanisms
intensify in the system. For the same magnitude (moderate effects) of bulk and wall reaction mechanisms, there appears to be an increased
conversion/performance in the homogeneous case. For small values of the reaction parameters, the improvement in the performance (3%)
is more due to the wall reaction than bulk reaction. But, for moderate values of the non-dimensional reaction parameters (around 10), the
enhanced performance (28%) is more due to the bulk reaction than wall reaction. As the effects of secondary flow dominate, there is an
improvement in the performance of the reactor irrespective of the reactivity of the solute and the results agree with those of Mashelkar and
Venkatasubramanian [AIChE J. 313 (1985) 440] for the case of non-absorbing walls. It is also observed that the approach of isoconcentration
profile to the stream line pattern occurs at a lower value of the curvature parameter in the presence of wall reaction. The study is extended to
examine the modifications in the tracer response measurements due to the power law rheology of the flowing fluid. The salient observation,
irrespective of the reactivity of the solute, is that the performance of the reactor is improved in the case of pseudoplastic fluids compared
to dilatant fluids. This improvement is further enhanced due to the presence of mild wall reaction.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Gas–liquid reactions are of considerable importance in
chemical industries. The typical processes include oxida-
tion, hydrogenation, chlorination, sulphonation and gas
purification by scrubbing. In petrochemical applications,
biotechnology and waste water treatment plants, the bubble
column reactors are utilized for improved selectivity. In
electro-chemical industries, the effect of hydrodynamics on
ion exchange membranes have been widely used. Standards
of pollution control focus on the purification of reaction
mixtures and also monitor optimum parameters for running
a chemical reaction so as to obtain the ambient toxin con-
centrations, levels of pesticides or water pollutants that may
jeoparadize occupational safety or health. In all the above
cases, information is required regarding the effluent bulk
average concentration.

Evans and Kenney[13] calculated empirically the rate of
diffusion of nitrogen gas injected into flowing hydrogen gas
under conditions in which the nitrogen gas can be exchanged
by diffusion with a retentive layer of stagnant gas held in
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a porous solid structure. The significance of reversible ad-
sorption of chemically active solutes on the flow boundary
was observed experimentally by Clifford et al.[8], when
studying the diffusion of hydrogen atoms in flowing nitro-
gen. Boddington and Clifford[6] emphasized the important
effects of these exchange processes and discussed a number
of boundary conditions at the flow boundary. Plumb and
Ryan [24] determined experimentally the rate of diffusion
of oxygen atoms in flowing helium using a modification
of Taylor’s dispersion theory[29] for the case of passive
species injected into flowing solvent. It is known that the
dispersion models, in fact, incorporate the radial and longi-
tudinal mixing effects into a single effective axial dispersion
coefficient and give some kind of cross-section averaged
description of the reactor. In this direction, fully developed
dispersion studies when the tracer is irreversibly absorbed
at the outer boundary were taken up by Sankarasubrama-
nian and Gill[27], Lungu and Moffat[20], Smith [28] and
Barton [4]. A more general boundary condition incorpo-
rating the history dependence was taken up by Purnama
[23], who calculated the fully developed dispersion coeffi-
cients. The details of concentration distribution of a solute
in a fluid in laminar flow through a straight tubular reactor
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coated with a retentive layer was analysed by Shankar and
Lenhoff [26].

The local mass transfer mechanisms are greatly affected
by the complex flow patterns as in helical coils. Fluids
flowing in curved tubes are subjected to centrifugal forces,
which contribute to the generation of secondary flows. This
additional complexity is being used in most of the process
applications utilising helical coils. For example, helically
coiled tubes are often used as efficient mixing devices and
as cooling coils in refrigeration equipments and nuclear wa-
ter reactors. The hydrodynamics of the flow of a Newtonian
fluid in a mildly curved tube was first analysed by Dean
[11,12], and since then an extensive review of the flow phe-
nomena was reported[5,17]. However, there appears to be
very few studies on the models incorporating mass transfer
mechanisms accompanied by chemical reactions in coiled
tubes.

Mashelkar and Venkatasubramanian[22] solved numeri-
cally the steady state mass transfer of a homogeneously re-
active solute in a mildly coiled tubular reactor using Dean’s
profiles. Jayaraman et al.[19] were the first to analyse the
fully developed dispersion in a mildly curved tube with ab-
sorbing walls, using a two phase model. Their results vali-
dated using the corresponding experimental results showed
that the influence of secondary flow on dispersion was re-
duced if the tracer was very soluble in the wall. Following
the solution methodology of Jayaraman et al.[19], the case
of weak absorption mechanism occurring at the flow bound-
ary of curved tubular reactors was analysed by Balasubra-
manian et al.[2]. The analysis revealed that the dispersion
mechanism was enhanced on account of weak losses at the
flow boundary and the dominant effect of secondary flows
was to cause a significant drop in the corresponding straight
tube dispersion coefficients. Balasubramanian et al.[3] ob-
served that as the value of the wall absorption parameter
increased, the dispersion coefficient became less susceptible
to the increase in secondary flow effects.

The emphasis in the above mentioned studies was on the
longitudinal dispersion. Through the changes in the disper-
sion coefficient and hence the average concentration, the
combined effect of secondary flow and boundary absorp-
tion was studied. But, applications to the petroleum industry,
waste water treatment plants, etc. require information regard-
ing the bulk concentration details at various axial locations
of the flow reactor. Further, in practice, especially in chro-
matographic experiments, it is most likely that a cup-mixing
concentration instead of an area-average concentration is
measured. For such applications, it is necessary to calculate
the concentration profiles at various axial locations of the
continuous flow reactors as well as the velocity weighted
bulk average concentrations.

The non-linear rheological properties induce strong varia-
tion of the velocity profiles (flow distributions) compared to
those observed for a Newtonian fluid and hence also have an
impact on the mass transfer processes. Recent developments
indicate that the study of non-Newtonian fluids is useful in

a wide variety of industrial processes like industrial waste
flow, process slurry operations, the manufacture of inks, pig-
ments and paints, polymer and plastic synthesis/fabrication,
etc. The modified conversions in the presence of homoge-
neous chemical reactions due to non-Newtonian characteris-
tics in laminar tubular reactor was presented by Homsy and
Strohman[15] and Mashelkar[21]. A comprehensive review
of flow in curved tubes of non-Newtonian fluids has been
cited in a number of articles[1,5]. In the case of mass trans-
fer processes of homogeneously reactive solutes in power
law fluids flowing through mildly coiled tubes, Mashelkar
and Venkatasubramanian[22] solved numerically the equa-
tion of convection diffusion using the velocity profiles de-
rived by Raju and Rathna[25]. The authors presented the
detailed spatial concentration distributions and bulk mean
concentration at the outlet.

The objective of the present study is to examine the steady
state mass transfer at the reactive wall of a mildly curved
tubular reactor through a detailed analysis of the concentra-
tion field using the axially marching spectral finite differ-
ence method. InSection 2, the mathematical model in terms
of the governing equation is presented.Sections 3.1 and 3.2
give the velocity profiles for a Newtonian and a power law
fluid, respectively. The inlet and the boundary conditions are
discussed inSection 4. In Section 5, we analyse the New-
tonian case using the spectral method of solution and the
method of solution is extended for power law fluids using
the velocity profiles derived by Raju and Rathna[25]. The
bulk average concentration is computed inSection 6. The
effect of interaction of the Dean number (N), bulk (α) and
wall (β) reaction parameters on the mass transfer for the
Newtonian case is studied inSection 7. The effect of power
law index on the flowing fluid is examined inSection 7.1.
A brief summary of the results is presented inSection 8.
The results of the analysis are first verified in the case of
straight tubular reactor and the results in the case of bulk re-
action in a power law fluid flowing through a mildly curved
tube are verified with[22]. Irrespective of the reactivity of
the solute, an improved performance is observed in the case
of pseudoplastic fluid compared to dilatant fluids. An im-
proved reactor performance was found in the presence of
mild wall reaction compared to the same magnitude of the
bulk reaction parameter. However, the reactor performance
was always better in the case of moderate to large reactions
occurring in the bulk compared to the same magnitude of
the reaction at the wall.

2. Mathematical formulation

The fluid dynamic behaviour in a circular curved tube of
given curvature ratio, (λ = b/a, whereb is the coil radius
anda the tube radius) is characterized by the Dean number
N1/2(= Re/

√
λ) whereReis the Reynolds number based on

the radius of the tube[11,12]. The toroidal coordinate system
(r, θ, φ) for the simulation of the motion of the Newtonian
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Fig. 1. Toroidal coordinate system.

fluid flowing through a circular tube of radiusa, coiled in
the form of a circle is illustrated inFig. 1.

ZOC and BOC are the vertical and horizontal planes, re-
spectively. OZ denotes the axis of the circle around which
the tube is coiled. C represents the centre of cross-section of
the tube in a plane which makes an angleφ with the fixed
axial plane. OC is of lengthb, which is the radius of curva-
ture of the coiled system,r∗ denotes the distance CP andθ
is the angle which CP makes with the line OC produced.

The steady state mass transfer of a homogeneously reac-
tive solute of concentrationc in a fully developed laminar
flow of a Newtonian fluid flowing through a mildly coiled
tube is considered. The convective diffusion equation, un-
der the assumption that the influence of axial convection is
much stronger than the axial molecular diffusion, is given by

σ

[
u
∂c

∂r
+ v

r

∂c

∂θ

]
+ w

∂c

∂z
= 1

r

∂

∂r

[
r
∂c

∂r

]
+ 1

r2

∂2c

∂θ2
− αc

(1)

with the scaled parameters and variables taken as

c = c∗

cR
, r = r∗

a
, z = z∗

a2wm/ν
,

(u, v) = (u∗, v∗)
(ν
a

)
, w = w∗

wm
,

t = t∗

a2/Dm
, α = α∗a2

Dm
(2)

wherecR is a reference concentration,v the kinematic vis-
cosity,Pe= (awm)/Dm the Péclét number,σ = ν/Dm the
Schmidt number,wm the mean axial velocity,Dm the molec-
ular diffusivity,α the non-dimensional rate constant for a first
order reaction.u∗, v∗, w∗ represent the dimensional veloc-
ity components along ther, θ, φ directions, respectively, and
the remaining starred variables represent the corresponding
dimensional quantities.

3. Velocity profiles

For flow through tubes of small curvature, we use the first
few terms of the Dean’s/Raju and Rathna’s expressions for
the velocity field for Newtonian and power law models, re-
spectively (the expressions being valid for moderately large
values ofN). The perturbation series expansions for the axial
velocity componentw and the stream functionψ are written
as

w = w0 + Nw1 +N2w2 + · · · (3)

ψ = Nf1(r) sinθ +N2f2(r) sin 2θ + · · · (4)

wherew1 = w11(r) cosθ andw2 = w20(r)+w
†
20(r) cos 2θ.

The components of the secondary flow velocities,u, v are
obtained from

u = 1

r

∂ψ

∂θ
, v = −∂ψ

∂r
(5)

For the computation of the bulk average concentration we

do not need the expressions forf2(r) andw†
20(r).

3.1. Newtonian fluids

In the case of Newtonian fluids, we use the leading terms
of the modified velocity profiles proposed by Dean[11,12].
The expressions forw0, w11, w20 andf1 are given by

w0 = 2 − 2r2, w11 = 19r − 40r3 + 30r5 − 10r7 + r9

1440
,

w20 = −4119+ 21 280r2 − 46 340r4 + 55 440r6 − 39 830r8 + 17 584r10 − 4620r12 + 640r14 − 35r16

350× 5762
and

f1(r) = 4r − 9r3 + 6r5 − r7

72

3.2. Power law fluids

In this case, we use the leading terms of the modified
velocity profiles derived by Raju and Rathna[25] in terms
of the power law indexnp. We have

w0 = 3np + 1

np + 1
[1 − r1+1/np] (6)
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w11 = r1/np

{
30Ap(1 − r1+1/np)− 60Bp(np + 1)2(1 − rS+1/np)

[(npS + 1)(npS + 2 + np)] + 5Dp(1 − r3(1+1/np))− 3Ep(1 − r4(1 + 1/np)

}
(7)

and

f1(r) = [Apr + Bpr
S +Dpr

(3np+2)/np

−Epr
(4np+3)/np] sinθ (8)

where the expressions forAp, . . . , Ep are given in
Appendix A.

4. Boundary conditions

The heterogeneous reaction mechanism occurring at the
wall of the tubular reactor is given by

∂c

∂r
= −βc at r = 1 (9)

whereβ = β∗a/Dm, represents the non-dimensional wall
reaction parameter andβ∗, the corresponding dimensional
rate constant for a first order reaction. In addition, the regu-
larity condition atr = 0 (so that we require a finite concen-
tration at the centre of the tube) and the symmetry condition
atθ = 0 andθ = π, respectively, are imposed. Thus we have

∂c

∂θ
= 0 atθ = 0 and θ = π (10)

At the inlet, it is assumed that the fluid with constant con-
centration enters the tube so that

c = 1 atz = 0 (11)

5. Spectral method

In this section, following Jayaraman et al.[19], the so-
lution of Eq. (1) along with the associated set of inlet and
boundary conditions is attempted by the spectral method of
analysis.

It was observed by Jayaraman et al.[19], that at low Dean
number a small change in axial velocity profilew occurs
because of the curvature and this has little effect on the mass
transfer mechanisms. Thus, the straight tube axial velocity
profile (w ≈ w0) was found sufficient for the solution of the
convective diffusion equation (1). The solution toEq. (1)
was formulated in terms of the Fourier cosine series as

c(r, θ, z) = c0(r, z)+ c1(r, z) cosθ + c2(r, z) cos 2θ + · · ·
(12)

It is to be noted that the coefficientscl, l = 0,1,2, . . . , are
dependent on the parametersN, σ, α and β. We multiply
Eq. (1)by cos(lθ), after substituting in the equation the series
expansions forw, u, v andc from Eqs. (3)–(5) and (12)and
integrate from 0 to 2π. We obtain the following system of

L+1 partial differential equations (with the series truncated
afterL terms):
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′ − c′2f1] + c′′1 + 1

r
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−
(
α+ 1

r2

)
c1,
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2r
[(l+ 1)(cl+1f1)

′ − (l− 1)(cl−1f1)
′

−l(c′l+1−c′l−1)f1]+c′′l + 1

r
c′1 −

(
α+ l2

r2

)
cl

(13)

l = 2,3, . . . , L, where dash denotes differentiation with
respect to the radial direction.

The inlet condition atz = 0 (Eq. (11)) gives

cl =
{

1, l = 0

0, l > 0
(14)

The boundary conditions reduce to the following:

(a) First order wall absorption (Eq. (9))

∂cl

∂r
= −βcl for l = 0,1, . . . , L at r = 1 (15)

(b) The condition of finite concentration at the centre of
the tube requires that all the coefficientscl(r, z) must
remain finite atr = 0. Following Johnson and Kamm
[18], Jayaraman et al.[19], the conditions valid atr = 0
can be obtained as

cl = 0 for l = 1,2, . . . , L at r = 0 (16)

∂c0

∂r
= 0 atr = 0 (17)

The symmetry condition (Eq. (10)) at θ = 0 andθ = π

is automatically satisfied.

Eq. (13)was solved by using a second order finite differ-
ence scheme which marches along the axial direction. The
resulting block tridiagonal system of equations at each axial
location was solved using a block tridiagonal system solver
(Appendix B). The number (L) of spectral modes required
to describe the concentration distributioncL, was fixed such
that the concentration of the highest spectral mode was at
most 1% ofc0. For Nσ ≤ 2500, L was taken as 10. For
Nσ > 2500,L was increased withNσ up to a maximum of
L = 30 forNσ = 105.

We have also extended the spectral method of analysis
discussed earlier in this section, to incorporate the effect of
pseudoplasticity on the steady state mass transfer of a reac-
tive solute in a mildly curved tubular reactor. The method of
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solution is on the same lines as that of the Newtonian fluids
except that now the modified velocity profiles are used.

6. Bulk average concentration

The concentration (c) profile obtained by the spectral
model was used to calculate the bulk average concentra-
tion at fixed axial locations. The bulk average concentration
cavg(z) using the spectral model is given by

cavg(z) =
∫ 2π

0

∫ 1
0 rwcdr dθ∫ 2π

0

∫ 1
0 rwdr dθ

(18)

Substituting the expansions forw (Eq. (3)) andc (Eq. (12))
we have

cavg(z) =
∫ 2π

0

∫ 1
0 r[w0 + Nw1 +N2w2 + · · · ][c0 + c1 cosθ + c2 cos(2θ)+ · · · ] dr dθ∫ 2π

0

∫ 1
0 r[w0 + Nw1 +N2w2 + · · · ] dr dθ

(19)

Simplifying we have the approximation

cavg(z) =
∫ 1

0 r[w0c0 + (Nw11c1/2)+N2w20c0] dr∫ 1
0 r[w0 +N2w20] dr

(20)

The integrals inEq. (20)were evaluated by using the Simp-
son rule.

7. Results and discussions

The steady state mass transfer of a reactive solute in a
Newtonian fluid flowing through a mildly curved tubular re-
actor was analysed using the axially marching spectral finite
difference technique. The cumulative effect on the reactor
performance due to secondary flows along with the bulk (α)
and wall (β) reaction parameters are examined. The reduc-
tion in the value of̃ξ (reactor length) to achieve a fixed level
of conversion [1− cavg(ξ̃)] where ξ̃ = z/σ is considered as
a measurement of the improved performance of the reactor.
The admissible values[7,14,22]of the bulk reaction (α) and
the wall reaction (β) parameters are taken asα = 0,2,6,10,
andβ = 0,2,6,10, respectively. The overall performance
on account of secondary flows was analysed in terms of the
grouped parameterNσ which is given the values of 2500,
5000 and 10 000. The groupNσ is the ratio of terms in
the concentration equation representing convection by sec-
ondary motion to the diffusive terms and can be referred to
as secondary flow Péclét number. WhenNσ is large, then it
means thatσ is large since Dean’s velocity profiles are used.
The values ofNσ are taken asNσ ≥ 2500 because smaller
values do not yield significant deviations from the straight
tube results. In the present analysis, the Schmidt number (σ)
is taken of the order of 1000 and this is true for most liquids.

The effect of secondary flows along with the bulk (α) and
wall (β) reaction parameters for a Newtonian fluid on the
bulk average concentration atξ̃ = 0.15 is given inTable 1.

Table 1
Values ofcavg at ξ̃ = 0.15 for a Newtonian fluid

α β Nσ = 0 Nσ = 2500 Nσ = 5000 Nσ = 10 000

0 0 1.0 1.0 1.0 1.0
– 2 0.7114 0.6851 0.6746 0.6666
– 6 0.5836 0.5186 0.4919 0.4695
– 10 0.5454 0.4644 0.4313 0.4027

0 0 1.0 1.0 1.0 1.0
2 – 0.7483 0.7469 0.7465 0.7464
6 – 0.4357 0.4255 0.4226 0.4213

10 – 0.2645 0.2484 0.2438 0.2415

2 6 0.4700 0.4091 0.3855 0.3662
6 2 0.3519 0.3196 0.3086 0.3012

The accuracy of the solution obtained from the spectral
method was first checked by comparing the bulk average
concentration with the published results in the limiting case
of the straight tubular reactors. For the case of solutes un-
dergoing only the bulk reaction in a Newtonian fluid flowing
through straight tubular reactors, the results are found to be
in exact agreement with Cleland and Wilhelm[7] and Hsu
[16].

We observe fromTable 1that asNσ increases, i.e. as the
effect of secondary flow dominates, there is an improvement
in the performance of the reactor irrespective of the reactivity
of the solute and the results are in agreement with those
of Mashelkar and Venkatasubramanian[22] for the case of
non-absorbing walls.

The performance of the straight and curved tubular reac-
tors is influenced by the hydrodynamics of the fluid flow in
these reactors. In straight tubular reactor, in the absence of
any wall reaction, the elements near the wall which have low
velocities undergo less homogeneous reaction. This situa-
tion is reversed for elements near the central core. Also, the
only mechanism by which elements move across the radial
direction is by molecular diffusion, which is an extremely
slow process. However, in the case of coiled tubes, because
of the secondary flows, the elements near the central core are
brought to the outer wall and those near the outer wall are
taken to the central core. This process helps in smoothing
out the residence time distribution of the various elements,
which is also a cause for the observed improved conversion.

Fig. 2gives the effect of the wall reaction parameter on the
bulk average concentration for a Newtonian fluid. Results
from Table 1andFig. 2indicate that for the same magnitude
of bulk and wall reaction mechanisms, there appears to be
an increased conversion/performance in the homogeneous
caseβ = 0. For moderate values of the non-dimensional
reaction parameters (around 10), the enhanced performance
(28%) is more due to the bulk reaction than wall reaction. In
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Fig. 2. Variation of the bulk average concentrationcavg with ξ̄ for values
of β.

the case of a homogeneously reactive solute, the residence
time of the various elements depends on the flow pattern of
the flowing fluid. The residence time of various elements is
increased on account of secondary flows as the flow becomes
less effective in spreading the material longitudinally which
results in the improved reactivity in the bulk. However, in the
presence of a reactive wall, the elements around the wall area
undergo reaction immediately on contact, whereas those at
the centre are less affected resulting in a higher value of the
bulk average concentration or a decreased performance (see
Table 1). The presence of significant secondary flows in the
system (within Dean constraint) tries to uniform out these
differences which can only slightly increase the residence
time of the various elements indicating an improvement in
the performance on account of secondary flows in this case.
In comparison to the case of bulk reaction, the extent of

Fig. 3. Bulk average concentrationcavg in the case of Newtonian fluids atξ̄ = 0.15 for (a)β = 0 and (b)α = 0.

improvement in the performance of the reactor on account
of secondary flows was found to be more significant when
boundary reaction was also included.

The whole scenario is changed when we consider very
mild effects of bulk or wall reaction mechanisms, sayα ≈
2 or β ≈ 2 (Fig. 3a and b). An improved performance is
observed because of the boundary reaction, i.e. for small
values of the reaction parameters, the improvement in the
performance (3%) is more due to the reaction at the wall than
bulk reaction. As the rate of contaminant depletion at the
wall is proportional to the wall absorption parameterβ and
the value of the concentration at the wall, we observe that
for smallβ, a reducedcavg is obtained. The secondary flow
effect, in addition, further increases the residence time of
the various elements thereby resulting in the much improved
performance. However, as bulk reaction effects intensify in
the system it is observed that the effect of wall reaction
becomes less significant.

Fig. 4(i)–(vi) shows the isoconcentration profiles in New-
tonian fluids forα = 2 and for various values ofβ, Nσ at ξ̃ =
0.15.β is fixed at 2 for (i)–(iii) and it varies from 0 to 6 in
(iv)–(vi). For fixed extents of bulk (α) and wall (β) reaction
effects, results indicate that the influence of secondary flow
increases with the increase in the value ofNσ. The secondary
flow becomes more skewed towards the outer wall of the tube
and at a particular value ofNσ say around 104, the concen-
tration profile appears in two cell patterns. AsNσ is further
increased, the increase in the intensity of secondary flows
makes the concentration profile line up with the secondary
flow streamlines. Further, it is observed that with boundary
reaction, the approach of isoconcentration profile to the sec-
ondary flow stream line pattern occurs at a lower value of
theNσ (Fig. 4(iii) and (vi)). This is because of development
of radial concentration gradients due to which the alignment
of solute particles along the secondary flow streamline pat-
tern occurs for a lower value ofNσ whereas in the presence
of boundary reaction, the approach to streamline pattern is
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Fig. 4. (i)–(iii) Isoconcentration profiles at̄ξ = 0.15 for α = 2 andβ = 2 in a Newtonian fluid; (iv)–(vi) isoconcentration profiles atξ̄ = 0.15 for α = 2 andNσ = 5000 andβ = 0,2,6.
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Fig. 5. Local concentration profiles for a Newtonian fluid on the horizontal (cH) and the vertical (cV) planes at̃ξ = 0.15 andNσ = 5000 for: (a)α = 0,
β = 2; (b) α = 0, β = 6. ◦: cV for Nσ = 2500; �: cH for Nσ = 2500,•: cV for Nσ = 10 000,×: cH for Nσ = 10 000,�: cV for Nσ = 0.

Table 2
Various order modifications incavg at ξ̃ = 0.15 for α = 2 andβ = 0

Nσ cavg O(N) O(N2)

0 0.7483 0.0 0.0
1000 0.7480 0.2426× 10−4 0.1478× 10−5

2500 0.7469 0.1330× 10−4 0.1493× 10−5

3500 0.7465 0.9605× 10−5 0.1492× 10−5

5000 0.7984 0.7684× 10−5 0.1496× 10−5

10000 0.7464 0.4159× 10−5 0.1500× 10−5

in accordance with the flow details of the fluid. Once again,
it is observed that as the bulk reaction effects increase, the
effect of wall reaction becomes less significant.

Fig. 5a and b gives the variation of local concentration
profiles on the horizontal (cH) and vertical (cV) planes of
the coiled tubular reactor for the various values of the wall
reaction parameters atξ̃ = 0.15. In view of the symmetric
conditions with respect toθ (Eq. (10)) we find that the con-
centration profiles on the vertical plane (cV) are symmetric.
Because of the variation in the fluid motion towards the inner

Table 3
Various order modifications incavg at ξ̃ = 0.15 for α = 0 andβ = 2

Nσ cavg O(N) O(N2)

0 0.7114 0.0 0.0
1000 0.7044 0.7636× 10−4 0.1492× 10−5

2500 0.6851 0.4220× 10−4 0.1550× 10−5

3500 0.6790 0.3217× 10−4 0.1551× 10−5

5000 0.6746 0.2699× 10−4 0.1568× 10−5

10000 0.6666 0.1512× 10−4 0.1588× 10−5

and the outer walls of the coiled tube, as in[22], the profiles
on the horizontal (cH) plane are non-symmetric. It can be
further observed that when the solute undergoes boundary
reaction, the ratio of maximum to minimum value of the
point concentration in straight tubular reactor is more than
that in a coiled tubular reactor. This is because, in compari-
son to the concentration profile in a straight tubular reactor,
the profile is more uniform in a coiled tubular reactor.

The bulk average concentration given by expression in
Eq. (20) was further simplified to analyse (inTables 2

Fig. 6. Velocity profiles for a power law fluid.
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and 3) the contribution due to the O(N) and O(N2) terms of
the axial velocity(w) profile. The terms are given by

cavg(z)

[∫ 1

0
rw0 dr

]

=
∫ 1

0
rw0c0 dr + N

2

∫ 1

0
rw11c1 dr

+N2

[∫ 1

0
rw20c0 dr −

∫ 1
0 rw0c0 dr

∫ 1
0 rw20 dr∫ 1

0 rw0 dr

]
+ · · ·

(21)

Fig. 7. Local concentration profiles on the horizontal (cH) and the vertical (cV) planes at̃ξ = 0.15 andNσ = 5000 for: (a)α = 0, β = 2, np = 0.5; (b)
α = 0, β = 6, np = 0.5; (c) α = 0, β = 2, np = 1.5; (d) α = 0, β = 6, np = 1.5. ◦: cv for Nσ = 2500,�: cH for Nσ = 2500,•: cV for Nσ = 10 000
×: cH for Nσ = 10 000,�: cv for Nσ = 0.

It is observed that the contribution of the O(N2) terms are
less significant compared to the contribution of the O(N)
terms.

7.1. Extension to power law fluids

In this section, we extend our earlier discussion to the
case when the fluid is represented by a power law model.
The modified velocity profiles proposed by Raju and Rathna
[25], in conjunction with the spectral method of solution
was used to examine the effect of power law index (np) on
the various tracer response measurements. The values ofnp
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Table 4
Influence ofβ, Nσ and np on cavg at ξ̃ = 0.15 for α = 0

� Nσ np = 0.50 np = 0.75 np = 1.00 np = 1.25 np = 1.50

2 0 0.7042 0.7088 0.7114 0.7132 0.7144
– 1000 0.7013 0.7035 0.7044 0.7050 0.7054
– 2500 0.6795 0.6841 0.6851 0.6853 0.6858
– 3500 0.6726 0.6780 0.6800 0.6803 0.6812
– 5000 0.6713 0.6729 0.6746 0.6756 0.6764
– 10000 0.6621 0.6651 0.6666 0.6672 0.6673

6 0 0.5678 0.5778 0.5836 0.5874 0.5901
– 1000 0.5607 0.5647 0.5657 0.5667 0.5671
– 2500 0.5307 0.5212 0.5186 0.5190 0.5201
– 3500 0.5081 0.5015 0.5030 0.5068 0.5087
– 5000 0.4849 0.4889 0.4919 0.4934 0.4956
– 10000 0.4600 0.4662 0.4695 0.4711 0.4718

are taken as 0.5, 0.75, 1.0, 1.25 and 1.50.Fig. 6 gives the
variation of the velocity profilew0 with r. In comparison to
the velocity profiles for the Newtonian case, the profiles in
the case of pseudoplastic(np < 1) fluids are blunt and those
in case of dilatant(np > 1) fluids are sharper.

Fig. 7a–d gives the variation of local concentration pro-
files on the horizontal (cH) and vertical (cV) planes of the
coiled tubular reactor for various values of the wall absorp-
tion parameter at̃ξ = 0.15. On the vertical plane (cV), the
local concentration decreases towards the inner wall and
increases towards the outer wall as the power law index
np decreases. Hence, in view of the nature of the velocity
profiles of the pseudoplastic fluids, the ratio of maximum to
minimum value of the point concentration was found to be
less than that for a Newtonian fluid. It is also observed that
the difference between the maximum and minimum value of
the point concentration is more due to the reaction at the sur-
face of the tube compared to the same magnitude of the bulk
reaction parameter. Also, irrespective of the reaction mech-
anism it is observed fromFig. 7a–d that in the presence of
mild secondary flows, the flattening effect of pseudoplastic
fluid dominates. The two centres of counter rotating vortices
appear at a lower value ofNσ for a dilatant fluid and in the
presence of boundary reaction this value is further lowered.

When the effect of power law index (np) on the mass trans-
fer processes of homogeneously reactive solute in straight
tubular flow was taken into consideration, the results were
found to agree with Mashelkar[21]. In comparison to the
Newtonian case, it was observed that there was an improved
conversion in both straight and curved tubular reactors[22]
because of the pseudoplastic nature of the fluid. The effect
of secondary flows along with the bulk and wall reaction
mechanisms on the bulk average concentration atξ̃ = 0.15
is given inTable 4. Results indicate that irrespective of the
pseudoplastic or dilatant nature of the fluid, the overall be-
haviour of the reactor on account of secondary flows and ei-
ther one of the reaction parameters remain the same as that
for the Newtonian case. It was found that in straight tubular
reactors, the effect of increasing pseudoplasticity (reduced
np) is to decrease the concentration of the reactant at any

axial position and this helps in increasing the residence time
of various elements in comparison to the Newtonian case.
Hence, compared to the case of Newtonian fluids, a de-
creased value of the bulk average concentration or improved
performance at any axial position is observed in case of
pseudoplastic fluids. This improvement is further enhanced
due to the presence of mild wall reaction.

The curvature effect on the isoconcentration profiles of the
power law fluids is similar to that for the Newtonian fluid.
For a fixed extent of reaction parameters, results indicate that
with the increasing pseudoplasticity (reducednp) of the fluid,
the intensity of secondary flow in power law fluid decreases
whereas vice versa holds for a dilatant fluid. In addition,
compared to the Newtonian fluids, the overall approach of
the isoconcentration curves to the streamline patterns were
observed to occur at a larger value of the curvature parameter
Nσ for a pseudoplastic fluid and at a lower value ofNσ
for a dilatant fluid. In each of these cases the value of the
curvature parameter is further lowered due to mild reaction
at the surface of the tube.

8. Conclusions

The evolution of the concentration distribution in a
Newtonian fluid, over a range of parameter values for the
secondary flow and bulk/wall reaction was obtained using
an axially marching spectral finite difference scheme. The
accuracy of the solution was first checked by obtaining
the bulk average concentration in the limiting case of a
laminar straight tubular reactor. Results predominantly il-
lustrate that for fixed extent of secondary flows there was
an improvement in the performance of the reactor as the
effect of bulk and wall reaction mechanisms intensify in
the system. For the same magnitude (moderate effects) of
bulk and wall reaction mechanisms, there appears to be
an increased conversion/performance in the homogeneous
case. However, for small values of the reaction parameters
there appears to be an improved performance because of
wall reaction. As the effect of secondary flows dominate,
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there is an improvement in the performance of the reactor
irrespective of the reactivity of the solute and the results
are in agreement with those of Mashelkar and Venkatasub-
ramanian[22] for the case of non-absorbing walls. It was
also observed that the approach of isoconcentration profile
to the stream line pattern occurred at a lower value of the
curvature parameter due to the reaction at the surface of the
tube.

This study was extended to examine the modifications in
the tracer response measurements due to the power law rhe-
ology of the flowing fluid. The overall behaviour of the re-
actor in the case of power law fluids was found to be the
same as that for the Newtonian case. The salient observa-
tion irrespective of the reactivity of the solute includes an
improved performance of the reactor in case of pseudoplas-
tic fluids compared to dilatant fluids. This improvement is
further enhanced due to the presence of mild boundary re-
action. In the presence of moderate to large effects of sec-
ondary flows, the overall approach of the isoconcentration
curves to the streamline patterns were observed to occur at a
larger value of the curvature parameter in the case of pseu-
doplastic fluids and at a lower value of the curvature param-
eter for a dilatant fluid. The value of the curvature parameter
is further lowered due to mild reaction at the surface of the
tube. This study is based on Dean’s solution and hence the
Dean number cannot take very large values. Corresponding
to this solution, there is a single secondary flow vortex in
each half of the tube. However, there is a critical value of the
Dean number above which more than one steady solution
exists[9] and these solutions are four vortex in character.
This will affect the concentration profile as well and hence
our results have to be modified significantly for large values
of the Dean number.

The present study, with suitable modifications, can be
applied for modelling of cross-flow microfiltration and the
development of technique for overcoming the detrimental
effects of membrane fouling[10].
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Appendix A

S =
(np + 1)+

√
17n2

p − 2np + 1

2np
,

A1
p = npS[21n3

p + 53n2
p + 38np + 8],

A2
p = 60n4

p + 185n3
p + 200n2

p + 92np + 15,

A3
p = 12(np + 1)(1 − S)(2np + 1)(3np + 1),

A4
p = (4n2

p + 9np + 3)(n2
p + 4np + 1),

Ap = n3
p(npSA1

p − A2
p)

A3
pA

4
p

,

B1
p = 4(1 − S)(2np + 1)(3np + 1)A4

p,

Bp = n3
p(13n3

p + 31n2
p + 23np + 5)

B1
p

,

Dp = n4
p

4(1 + np)(3np + 1)(n2
p + 4np + 1)

,

Ep = n4
p

12(np + 1)(3np + 1)(4n2
p + 9np + 3)

Appendix B

Let &r and&z be the radial and axial step lengths, re-
spectively. Let the mesh be defined byzm = m&z andrj =
j&r. Let the numerical solution at(rj, zm) be defined by
cmj . Forward marching is used in the axial direction and the
radial derivatives are replaced by the following second order
approximations. At all internal nodes, we use

c′′|mj =
cmj+1 − 2cmj + cmn−1

(&r)2
, c′|mj =

cmj+1 − cmj−1

2&r
,

∂c

∂z

∣∣∣∣
m

j

=
cmj − cm−1

j

&z

At r = 0 we use

c′|mj =
−3cmj + 4cmj+1 − cmj+2

2&r

At r = 1 we use

c′|mj =
3cmj − 4cmj−1 + cmj−2

2&r

Using these approximations inEq. (13), we obtain a sys-
tem of (J − 1)(L + 1) algebraic equations for solution at
each axial location. This system is block tridiagonal, in
which each block is also tridiagonal. The subdiagonal, diag-
onal and superdiagonal entries (tridiagonal matrices of or-
derJ − 1) are defined by [B2, . . . , BL+1], [A1, . . . , AL+1]
and [C1, . . . , CL], respectively. The right hand side of the
system of equations is denoted by [b1, b2, . . . , bL+1] where
eachbi is a column vector of orderJ − 1. The solution
of this system can be obtained using a standard subroutine.
However, we give the following pseudocode of the system
solver.

• Step 1:
(a) DecomposeA1 = L̃1Ũ1. StoreL̃1, Ũ1.
(b) SolveA1Y1 = C1.
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(c) FindA2 = A2 − B2Y1.
(d) SolveA1z1 = b1.
(e) Modify b2 = b2 − B2z1.

• Step 2:
For i = 2,3, . . . , L do
(a) DecomposeAi = L̃iŨi. StoreL̃i, Ũi.
(b) SolveAiYi = Ci.
(c) FindAi+1 = Ai+1 − Bi+1Yi.
(d) SolveAizi = bi.
(e) Modify bi+1 = bi+1 − Bi+1zi.
end do.

• Step 3:
DecomposeAL+1 = L̃L+1ŨL+1. StoreL̃L+1, ŨL+1.
Now, the resulting matrix system is upper triangular

and can be solved by back substitution.
• Step 4:

(a) SolveL̃L+1ŨL+1dL+1 = bL+1.
(b) For i = L, . . . ,1 do
di = zi − Yidi+1.end do.

Form > 1, the stored decompositions are used, as the
elements of the coefficient matrices are constant.
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